#WarTeam at SemEval-2017 Task 6: Using Neural Networks for Discovering Humorous Tweets

نویسندگان

  • Iuliana Alexandra Flescan-Lovin-Arseni
  • Ramona Andreea Turcu
  • Cristina Sirbu
  • Larisa Alexa
  • Sandra Maria Amarandei
  • Nichita Herciu
  • Constantin Scutaru
  • Diana Trandabat
  • Adrian Iftene
چکیده

This paper presents the participation of #WarTeam in Task 6 of SemEval2017 with a system classifying humor by comparing and ranking tweets. The training data consists of annotated tweets from the @midnight TV show. #WarTeam’s system uses a neural network (TensorFlow) having inputs from a Naïve Bayes humor classifier and a sentiment analyzer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HumorHawk at SemEval-2017 Task 6: Mixing Meaning and Sound for Humor Recognition

This paper describes the winning system for SemEval-2017 Task 6: #HashtagWars: Learning a Sense of Humor. Humor detection has up until now been predominantly addressed using feature-based approaches. Our system utilizes recurrent deep learning methods with dense embeddings to predict humorous tweets from the @midnight show #HashtagWars. In order to include both meaning and sound in the analysis...

متن کامل

LIA at SemEval-2017 Task 4: An Ensemble of Neural Networks for Sentiment Classification

This paper describes the system developed at LIA for the SemEval-2017 evaluation campaign. The goal of Task 4.A was to identify sentiment polarity in tweets. The system is an ensemble of Deep Neural Network (DNN) models: Convolutional Neural Network (CNN) and Recurrent Neural Network Long Short-Term Memory (RNN-LSTM). We initialize the input representation of DNN with different sets of embeddin...

متن کامل

UniPI at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification

The paper describes our submission to the task on Sentiment Analysis on Twitter at SemEval 2016. The approach is based on a Deep Learning architecture using convolutional neural networks. The approach used only word embeddings as features. The submission used embeddings created from a corpus of news articles. We report on further experiments using embeddings built for a corpus of tweets as well...

متن کامل

IKM at SemEval-2017 Task 8: Convolutional Neural Networks for stance detection and rumor verification

This paper describes our approach for SemEval-2017 Task 8. We aim at detecting the stance of tweets and determining the veracity of the given rumor. We utilize a convolutional neural network for short text categorization using multiple filter sizes. Our approach beats the baseline classifiers on different event data with good F1 scores. The best of our submitted runs achieves rank 1 st among al...

متن کامل

QUB at SemEval-2017 Task 6: Cascaded Imbalanced Classification for Humor Analysis in Twitter

This paper presents our submission to SemEval-2017 Task 6: #HashtagWars: Learning a Sense of Humor. There are two subtasks: A. Pairwise Comparison, and B. Semi-Ranking. Our assumption is that the distribution of humorous and non-humorous texts in real life language is naturally imbalanced. Using Naïve Bayes Multinomial with standard text-representation features, we approached Subtask B as a seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017